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ABSTRACT

Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges.

It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component

of a number of operational numerical weather prediction models at the National Centers for Environmental

Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple

linear conversion of either the normalized difference vegetation index (NDVI) from theAdvancedVeryHigh

Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible In-

frared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple

spectral index of vegetation cover, GVFs derived from themmay lack the biophysical meaning required in the

Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over

densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On

the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to

derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation

methods are mathematically analyzed and are found to be significantly different from each other. Impacts of

GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and

Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-

based one when used in both the offline Noah LSM and WRF Model.

1. Introduction

The Noah land surface model (LSM; Ek et al. 2003;

Chen and Dudhia 2001) serves as the land component of a

number of the operational numerical weather prediction

(NWP)models at the National Centers for Environmental

Prediction (NCEP) of NOAA. Accuracy of the Noah

LSM simulations directly affects the NWP models and

may heavily rely on the accuracy of the input land surface

parameters of the LSM. The green vegetation fraction

(GVF) is one of the essential parameters, used as an im-

portant weighting coefficient in integrating the evapora-

tion from both soil and vegetation surfaces and the

vegetation transpiration into the latent heat flux between

land surface and the atmosphere. The high sensitivity of

the latent heat fluxes to the GVF value has been well

documented (Abramopoulos 1988; Miller et al. 2006).
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Remotely sensed land vegetation indices (VIs) provide

the capability of capturing the surface vegetation cover-

age and density globally and seasonally. The integration

of a satellite-basedGVF dataset into the LSMhasmade a

significant improvement to the NCEP forecasts in the

past decades (Gutman and Ignatov 1998; Zeng et al. 2003;

Jiang et al. 2010; James et al. 2009; Miller et al. 2006;

Ruhge and Barlage 2011; Yin et al. 2016). For instance,

the climatological GVF datasets used in the operational

NWP models at NCEP are derived from NOAA’s Ad-

vanced Very High Resolution Radiometer (AVHRR)

top-of-atmosphere normalized difference vegeta-

tion index (NDVI) as GVF5 (NDVI 2NDVImin)/

(NDVImax2 NDVImin). NDVImin and NDVImax are

predefined and are set as constants spatially and tempo-

rally (Gutman and Ignatov 1998). Their validation results

showed that the use of the AVHRR-based GVF im-

proved the predicted surface fluxes (Gutman and Ignatov

1998). Later on, Zeng et al. (2003) developed a fraction

vegetation cover (FVC) dataset where NDVImin is set

at a global constant within each year but varies between

years, while NDVImax is a vegetation-type-dependent

variable varying from year to year. Miller et al. (2006)

analyzed the sensitivity of the Noah LSM to the FVC

using the Zeng et al. (2003) approach. They found that

the greatest impact on the surface energy and water

balance appeared in the summer by increasing the tran-

spiration more than 10Wm22 on average. The above-

mentioned satellite-based GVF inputs are average maps

generated from multiyear satellite VI observations. The

lack of the ability to capture real-time vegetation condi-

tions in the GVF climatology dataset motivates the gen-

eration of a near-real-time (NRT) GVF for the use in

NWPmodels (Jiang et al. 2010; James et al. 2009; Miller

et al. 2006; Ruhge and Barlage 2011; Case et al. 2014;

Yin et al. 2016). Jiang et al. (2010) derived weekly GVF

based on AVHRR/NDVI from the operational global

vegetation index system and further demonstrated the

benefit of the NRT weekly GVF to NWP. Yin et al.

(2016) examined the impact of both NRT albedo and

GVF (NDVI based). They concluded that the use of

NRT GVF improved Noah surface soil moisture (SM)

simulations by 19.3% and soil temperature by 9.3%.

Although NDVI- or EVI-based GVF datasets have

been operationally used in the numerical weather fore-

casting models for a wide range of applications, the is-

sues and improvements are worth discussing. It is clear

in the definition of a NDVI- or EVI-based GVF that it is

not an intrinsic physical quantity. The main defect in

radiometric remotely sensed VIs is the weak sensitivity

to surface vegetation density changes when entering an

asymptotic regime. It leads to saturation issues at mod-

erate- to high-vegetation cases. Even though EVI is

designed to optimize the vegetation response with im-

proved sensitivity in a high biomass region (Huete et al.

2002), the EVI-based GVF still suffers from the satu-

ration problem at moderate to high values of the leaf

area index (LAI; Fig. 3). Basically, spectral-based GVF

is a description of how ‘‘green’’ a land pixel is when

observed from a satellite sensor. It is based on the as-

sumption that the green portion within the land pixel has

uniform physical properties of the vegetation canopy.

This means that evapotranspiration is not limited by the

vertical density of vegetation on that green portion

within the pixel, which is not always true in reality. In

contrast, LAI, the ratio of the leaf surface area to unit

ground surface area (Bégué 1993), is a more represen-

tative index of biophysical characteristics of vegetation.

It is capable of representing the surface vegetation cover

with respect to both horizontal cover and vertical den-

sities. Thus, the GVF converted from LAI has the po-

tential to more accurately describe the proportion of

land surface and vegetation cover for biological and

physical processes. However, the research on how the

biophysical GVF would impact land surface models or

even weather forecast models is limited. Therefore, the

objectives of this paper are to 1) quantify the differences

between spectrally based and biophysically based GVF

and 2) evaluate their impacts on model estimates from

both uncoupled Noah LSM and coupled weather fore-

cast models [e.g., theWeatherResearch and Forecasting

(WRF) Model].

Section 2 describes GVF derivation methods based on

remotely sensed spectral and biophysical VIs, as well as

relevant validation datasets. Models and experiment de-

sign are introduced in section 3. The differences between

the two GVF datasets (EVI based and LAI based) and

their impacts on offline Noah simulations and WRF

forecasts are quantified in section 4. Section 5 provides

the discussion and conclusions.

2. Datasets

a. Green vegetation fraction

1) GVF DATASETS BASED ON VEGETATION INDEX

Spatially distributed GVF data products can be de-

rived from the vegetation index observed from satellite

sensors. Some studies proposed a nonlinear relationship

between spectral vegetation index and GVF (Carlson

and Ripley 1997; Myneni and Williams 1994; Wittich

1997) while others suggested a linear relationship to be

adequate (Gutman and Ignatov 1998). The derivation of

GVF from vegetation indices usually involves the cal-

culation of minimum VI for bare soil and maximum VI
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for dense vegetation. The minimum and maximum VIs

are empirically determined on the basis of analyses of a

large set of data with spatial and temporal representa-

tiveness. Themost commonmethod to obtain the extreme

values is to take the 5th and 95th percentiles from the

probability distribution function of the global VI maps.

Although NDVI-based GVF has been generated from

many remotely sensed data (e.g., MODIS, AVHRR), the

significant defect of the saturation issue is well known.

Studies have shown thatEVI ismore responsive to canopy

structural variation and better performs in heavy aerosol

conditions (Huete et al. 2002; Gao et al. 2000). The official

GVF product from Visible Infrared Imaging Radiometer

Suite (VIIRS) sensors is being generated from EVI in-

stead of NDVI, and the real-time EVI-based GVF prod-

uct from VIIRS is planned to serve as inputs to NCEP

operational Noah LSM runs in the future. This study,

therefore, evaluates the EVI-based GVF as a represen-

tative of spectral-based VI.

The spectral GVF dataset is derived from theMODIS

level-3 vegetation indices (MOD13A2; Huete et al.

1999). The EVI data in the MOD13A2 product are ob-

tained at every 16 days at 1-km spatial resolution in the

sinusoidal projection. The raw EVI tiles are smoothed

and gap-filled based on quality control flags using the

TIMESAT algorithm on a yearly basis (Jönsson and

Eklundh 2002). The processed EVI tiles are then mo-

saicked to global maps at the original spatial resolution

(1 km) using the MODIS Reprojection Tool (MRT).

Last, the smoothed global EVI maps are converted to a

GVF dataset based on the following linear trans-

formation equation (Jiang et al. 2010):

GVF5 (EVI2EVI
min

)/(EVI
max

2EVI
min

) , (1)

where EVImin and EVImax are theoretical EVI values

for bare soil where GVF 5 0 and dense vegetation

where GVF5 1. Both are global constants, independent

of vegetation and soil types, and empirically estimated,

following the current commonly used method. In our

study, the statistics of EVImax and EVImin are set to

0.5707 and 0.0602, which are calculated by taking the 5th

and 95th percentiles from the probability distribution

function of global EVI maps at different seasons.

2) GVF DATASETS BASED ON LAI

A biophysical GVF dataset is derived from the level-4

MODIS global LAI and fraction of photosynthetically

active radiation (FPAR) product (MOD15A2V005),

which is composited every 8 days at 1-km resolution

(Knyazikhin et al. 1998, 1999).

The LAI product is produced by exploiting the

MODIS spectral information of surface reflectance at up

to seven spectral bands. The main procedure of LAI

derivation is based on a three-dimensional formulation

of a radiative transfer algorithm in vegetation canopies.

Meanwhile, a backup looking-table algorithm is triggered

if the main procedure fails to estimate LAI using vege-

tation indices. The preprocess of raw LAI tiles is similar

to that of spectral GVF introduced in section 2a(1)

to keep their consistency. The raw LAI tiles are

smoothed, gap-filled, and mosaicked to global maps at

the original spatial resolution (1 km).

The processed global LAI maps are then converted to

GVF dataset based on the following equation according

to Norman’s method (Norman et al. 1995):

GVF5 12 e2b3LAI , (2)

where b 5 0.5 is the extinction coefficient for general

plant canopy.

b. SM and weather datasets for validations

1) NORTH AMERICAN SOIL MOISTURE

DATABASE

The North American Soil Moisture Database

(NASMD), developed and constructed at the De-

partment ofGeography’s Climate Science Laboratory at

Texas A&M University, provides a harmonized and

quality-controlled SM dataset for the entire continent of

North America from a variety of networks, such as

ARM Southern Great Plains, Climate Reference Net-

work, Oklahoma Mesonet, SNOTEL, and many others

(Quiring 2011). More details on NASMD can be found

at http://soilmoisture.tamu.edu/. In this study, the accu-

racy of both surface and root-zone SM estimates from

the long-term offline Noah LSM is validated using

NASMD measurements. The top-layer measurements

are used for surface SM validation, while the top N

layers with the accumulated depth within 1m are

weighted averaged for root-zone SM comparison. Since

NASMD combines ground observations from various

networks, N may differ from site to site. There are

eventually 593 NASMD sites in total involved in the

validation process in this study.

2) GROUND WEATHER OBSERVATIONS FOR WRF
FORECAST VALIDATION

The performance of WRF forecasts using different

GVF inputs is assessed using ground weather observa-

tions of near-surface variables. Specifically, the Global

Upper Air and Surface Weather Observations from

NCEP are collected for the evaluation of surface and

near-surface temperature and humidity forecasts. These

observations are composed of a global set of surface and
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upper-air reports operationally processed by NCEP,

including pressure, geopotential height, temperature,

dewpoint temperature, wind direction, and wind speed,

with the time intervals ranging from hourly to 12 hourly.

The data are archived in PREPBURF format avail-

able at the National Center for Atmospheric Research’s

Computational and Information Systems Laboratory

(http://rda.ucar.edu/datasets/ds337.0).

3. Models and experiment designs

a. Models

1) LIS AND THE NOAH LSM

TheNASALand Information System (LIS) is a flexible

software framework to integrate satellite and ground-

based observations and advanced LSMs to accurately

characterize land surface states and fluxes (Kumar et al.

2006, 2008). The land surface modeling infrastructure in

LIS consists of severalwell-documentedLSMs (e.g., Noah,

Community Land Model, Catchment, Mosaic), which

typically run in an uncoupledmode using a combination of

observation-based precipitation, radiation, and meteoro-

logical and land surface parameter datasets. The Noah

LSM implemented in LIS is used in all experiments in this

study because Noah LSM is the operational land surface

model for the numerical weather prediction at NCEP (Ek

et al. 2003; Chen andDudhia 2001). It is a one-dimensional

soil–atmosphere–vegetation transfer model which simu-

lates four-layer soil moisture (both liquid and frozen) with

thicknesses of 0–0.1, 0.1–0.4, 0.4–1, and 1–2m (Chen et al.

1996; Chen and Dudhia 2001; Ek et al. 2003). Specifically,

the Noah model, version 3.3, is employed in our study to

test GVF’s impact on offlinemodel simulations, and it also

serves as the core land component in the standard NCAR

AdvancedResearch version ofWRF (WRF-ARW)Model

for forecasting.

2) NASA NU-WRF

The NASA Unified WRF (NU-WRF) modeling sys-

tem developed at the NASA Goddard Space Flight

Center is an observation-driven integrated modeling

system representing aerosol, cloud, precipitation, and

land processes at satellite-resolved scales (Peters-Lidard

et al. 2015). The NU-WRF (version 7) adopted in this

study incorporates the standard WRF-ARW version

3.5.1 and LIS (v7.0rp1) into a unified framework with

distinct advantages of 1) setting up long-term spinup

land surface conditions on a common grid as the WRF

forecast domain, 2) providing LIS land simulations with

near-surface forcing from the parent WRF run, and 3)

easy replacement of updated initial conditions from LIS

output toWRF.More details of NUWRF configurations

are provided in section 3b(2).

b. Experiment design

A series of numerical experiments are conducted to

test the impact of the NRT GVF datasets derived with

the above two different methods and their relative

performance in both offline Noah LSM simulations

and WRF-ARW forecasts. As for the offline LSM, the

benefit over a long-term period (13 years) is analyzed.

Noah LSM simulations are performed from 2000 to

2012, using spectral- and biophysical-based GVF as in-

puts separately with identical meteorological forcing

data. SM estimates from the Noah runs are then com-

pared to the in situ measurements from the NASMD

network to access their performance. As for the WRF

Model, our study targets a 2-week period from 9 to

22 April 2015. The study period is of particular interest

because of a significant drought event that occurred

across much of the contiguous United States (CONUS).

This case is able to serve as a good benchmark for

assessing the impact of the proposed vegetation anom-

aly and its effect on land–atmosphere coupling. The

semicoupled LIS–WRF runs are carried out using the

spectral and biophysical GVF datasets separately while

keeping the settings of the model grid, biophysical pro-

cess schemes, and boundary conditions the same. More

details of experiments settings for the offline Noah LSM

and NWP model are given in the following sections.

1) EXPERIMENT ON OFFLINE NOAH MODEL

In this experiment, the Noah simulation is set up over

the CONUS (248–508N, 1258–658W) at 0.1258 spatial

resolution, with the validation period of the growing

season (April–October) from 2000 to 2012. The Noah

model is integrated forward using a 30-min time step,

forced by the NLDAS-2 forcing (Xia et al. 2012a,b).

The Noah runs output daily SM fields (in volumetric

soil moisture;m3m23) for analysis, from which the first

layer is used for surface SM analysis and the top three

layers are weighted averaged to obtain root-zone SM.

To create realistic initial variability in SM states, the

Noah SM profile is uniformly initialized and spun up

for a period from 1 January 1999 to 31 December 2012,

and all the simulations are initialized at 1 January 1999

with the analysis field from spinup and rerun through

31 December 2012.

To demonstrate how the twoGVF datasets impact the

accuracy of the Noah SM estimates, Noah LSM simu-

lations are performed using one GVF input at a time

while other meteorological forcing parameters are un-

changed. SM estimates from these two Noah LSM runs

are then validated against in situ SM measurements
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from the NASMD network over the CONUS. The dif-

ferences in three statistical metrics (bias, root-mean-

square error, and correlation) are examined to evaluate

the relative performance of the two GVF datasets. The

differences between these two datasets are tested for

statistical significance at a confidence interval of 95%.

Along with the experiments using EVI- and LAI-based

GVF, the Noah model runs with a default implementa-

tion of GVF climatology are carried out at the same time,

serving as benchmark. The climatologyGVFdataset used

in the current NCEP operational Noah LSM is a 5-yr

(1985–89) average derived from AVHRR observations.

It provides a monthly specification of GVF with a spatial

resolution of 0.1448 in a latitude–longitude projection

(Gutman and Ignatov 1998). Therefore, three exper-

iments are carried out using 1) climatology GVF, 2)

spectral-based GVF (EVI), and 3) biophysical-based

GVF (LAI).

2) EXPERIMENTS ON WRF FORECAST MODEL

With the tools introduced in section 3a, a semicoupled

LIS–WRF framework is designed to test how the two

different GVF derivation methods affect WRF weather

forecasts. In the coupling workflow, WRF provides at-

mospheric forcing data to LIS, and LIS sets up the sim-

ulation domain on the same grid (spatial resolution and

projection)with the same terrestrial data and land surface

physics (identical versions of the Noah LSM) as in the

WRF run. The insertion of different GVF inputs is con-

ducted within LIS. LIS then generates updated initiali-

zations and returns those updated initial land surface data

(SM, soil temperature, fluxes, albedo, etc.) to WRF for

next-day forecasts. Initializations of land states are up-

dated based on the different GVF inputs, which will im-

pact the subsequent forecasts in response to the changes

in signals of surface vegetation cover.

Similar to the Noah offline run, theWRF run with the

default implementation of GVF climatology is con-

ducted as the reference. Therefore, three WRF experi-

ments are carried out in this analysis using 1) climatology

GVF (WRF-CLIM), 2) spectral-based GVF (WRF-

EVI), and 3) biophysical-based GVF (WRF-LAI). The

study domain is configured at 12-km spatial resolution

in a Gaussian projection over North America. The LIS–

WRF runs are conducted for 14 days from 9 to 22 April

2015. From 16 April, WRF forecasts for each time step

(four steps a day for 7 days) are used to evaluate the

impacts of the two GVF derivation approaches. Each

model run is set up for 48-h forecasts, with hourly

outputs starting from a fixed initialization time

(0600 UTC). The 6-hourly GFS data are employed as

forcing data to initialize the WRF-ARW model runs.

The model configuration is summarized in detail in

Table 1. The settings of model grid, physical process

schemes, and boundary conditions are kept the same

for all three experiments.

4. Results and analysis

a. GVF differences

1) DIFFERENCE OF THE TWO GVF DERIVATION

METHODS

The difference of the two GVF derivation methods

can be analyzed by their responses to the same EVI

variations. The spectral GVF is calculated from EVI

with Eq. (1). Based on the results reported in Tanaka

et al. (2015), a relationship between EVI and LAI for

winter wheat is obtained as

EVI5 0:1731 0:554(12 e20:656LAI) . (3)

Inversing Eq. (3), the relationship between LAI and the

EVI can be obtained as

LAI52ln[12 (EVI2 0. 173)/0. 554]/0. 656. (4)

Combining Eqs. (2) and (4), the relationship between the

EVI and the biophysical GVF can be plotted in Fig. 1.

From Fig. 1, the biophysical GVF could be signifi-

cantly smaller than the spectral GVF for the same EVI

observations. The spectral GVF values could become

unrealistic when EVI is larger than;0.6, indicating that

EVI still has the saturation issue for dense vegetation

canopy similar to NDVI (Huete et al. 2002).

2) DATA PRODUCT DIFFERENCES

The global map of the GVF difference between the

spectral- and biophysical-based GVF products is shown

in the left panel of Fig. 2. The difference, averaged

over a 10-yr period (2007–16), implies that these two

GVF products vary significantly over space. The largest

disagreement can reach over 20%. The spectral GVF is

considerably lower over forest regions in general, such

as the Amazon rain forests and tropical rain forests,

while they are significantly higher over grassland and

temperate broadleaf and mixed forests, especially over

agricultural regions such as the U.S. Corn Belt, northern

and northeasternChina, and southern Europe. Zooming

in for the CONUS domain (Fig. 2, right), the LAI-based

biophysical GVF data are higher (negative difference)

than the EVI-based GVF over forest regions such as the

western and southeast coastal regions as well as the

states of Louisiana,Mississippi, andAlabama.However,

the spectral GVF data are significantly higher in the

agricultural regions in the Midwest and southeastern
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Texas by over 20%, and moderate in the Great Plains

region on the order of 5%–10%, compared to the bio-

physical GVF data product, which is consistent with the

results shown in Fig. 1. The variation over the western

desert region is mixed and relatively small, with a dif-

ference of less than 5%.

An agricultural-based site at Bondville, Illinois

(40.1788N, 88.7718W) is selected to show how much the

biophysical-based GVF data differ from spectral-based

data over time. The dynamics of GVF based on EVI and

LAI methods at Bondville over the warm season in 2008

are shown in Fig. 3. The plot shows significant differ-

ences between these two GVF datasets in terms of the

range and the rate of change. The GVF dataset derived

from EVI suffers perceived defects from the spectral-

based remotely sensed VIs, which confirms the un-

realistic GVF values associated with high EVI in Fig. 1.

The dynamic of the spectral-based GVF exhibits an

obvious saturation when the vegetation grows beyond a

certain threshold, which leads to losing the sensitivity

to vegetation growth throughout the period from late

summer to early fall. The changes during green-up and

senescence phases estimated from the EVI-based GVF

are at a much faster rate than those from the LAI-based

one. The EVI-based GVF reaches a value of 1 in mid-

July and remains at the status of full vegetation cover for

nearly 2 months before a sharp decrease starting in mid-

September. The biophysical-based GVF, on the other

hand, exhibits continuous growth of vegetation cover by

about 20% from mid-July to mid-August and a gradual

decrease afterward. The GVF changes reflected in the

LAI-based dataset are more representative of the actual

condition of the vegetation cover and yet are completely

missed in the EVI-based GVF dataset because of its

saturation issue. The use of a more accurate GVF input

into LSMs would definitely reduce the uncertainties in

the mode initialization, which in turn could improve the

model’s capability of simulating land surface states.

b. Evaluation of the Noah offline simulations

1) IMPACT OF GVF DIFFERENCES ON NOAH

MODEL SIMULATIONS

The significant variation in GVF inputs into the Noah

LSM is expected to notably impact the surface energy

budget in model simulations. Differences in heat flux

estimates (sensible, latent, and ground flux components)

from the Noah LSM over the Northern Mountain region

(408–49.48N, 1188–1048W) andOklahoma–lowerMississippi

region (29.88–39.28N, 1038–888W) are shown in Fig. 4, along

with regional GVF difference maps as a reference. The

mean difference map averaged over validation period

(9–22 April 2015) demonstrates significant impact on both

regions. The patterns of flux difference match well with

that of input GVF difference where higher GVF inputs

lead to a rise in latent heat flux and a drop in sensible flux

simulations and vice versa. Estimates of sensible heat

fluxes from the Noah run with EVI-based GVF have seen

an overall decrease by about 22Wm22 in Oklahoma, and

yet a substantial rise in Louisiana and southern Arkansas

on the order of 20–50Wm22. Simulations of latent heat

fluxes, on the other hand, are regionally altered on the

same level in terms ofmagnitude but in the opposite trend.

The water balance is also inevitably altered by

changes in surface GVF inputs. The impact is expected

to be significant on both surface and root-zone estimates

from the long-term run. The normalized difference of

surface (left) and root-zone SM (right) estimates from

the Noah LSM caused by the variation in these two

FIG. 1. The relationship between the spectral GVF (orange line)

or the biophysical GVF (blue curve) and the EVI for winter wheat

[based on results in Tanaka et al. (2015)].

TABLE 1. LIS–WRF model configuration details.

Variables Assignment

WRF dynamical core WRF-ARW

Grid spacing 12 km

Dimension (west–east by

south–north)

480 3 400

Integration time step 24 s (the same in LIS and

WRF-ARW)

Vertical dimension 30

Number of soil levels or layers 4

Land usage MODIS (20 category)

Microphysics 5 (Eta microphysics: the

operational microphysics

in NCEP models)

Land surface Noah (v3.3)

Planetary boundary layer Mellor–Yamada–Janjić

scheme
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different GVF inputs are shown in Fig. 5. The long-term

average difference is on the 10-yr basis from 2007 to

2016. The patterns of differences in surface and root-

zone SM estimates are similar but the influence to root-

zone SM estimates is considerably larger by around

15%. The impact over the western United States ap-

pears to be much larger than that over the east under

both dry and wet conditions.

Notably, the sensitivity of theNoah LSM toGVF input

is dependent on land surface type. For instance, about

18%–20% of GVF variation leads to a 5% difference in

surface SM estimates and up to 16% in the root zone in

Nebraska, while the impact at the same level of GVF

variation is very limited on the eastern coast. The histo-

gram of the normalized SM differences (both surface and

root zone; normalized by multiple-year mean SM) as the

FIG. 2. GVF differences between EVI- and LAI-based GVF products (GVF_EVI minus GVF_LAI) (left) over the global domain and

(right) over the CONUS domain, averaged over the period of 2007–16.

FIG. 3. GVFs converted from EVI and LAI over the growing season in 2008 at Bondville,

Illinois (40.1788N, 88.7718W).
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function of land surface type is shown in Fig. 6. Themean

differences of normalized GVF over each land type are

also shown in the figure as a reference. It is interesting to

notice that the Noah LSM is more sensitive to the GVF

change over shrubland, grassland, and cropland. Taking

the cropland as an example, around 3% of surface SM

estimates and as high as 5.5% at the root zone can be

detected corresponding to the surface GVF variation.

However, the impact on Noah SM estimates over de-

ciduous broadleaf forest is within 1% for both the surface

and root zone.

2) EVALUATION OF THE NOAH OFFLINE SM
SIMULATIONS

The Noah offline SM estimates are validated against

the ground observations from the NASMD network.

FIG. 4. GVF difference and corresponding changes of heat flux estimations from the Noahmodel (Noah run with

EVI-based GVF minus the LAI-based one) between 9 and 22 Apr 2015 over two regions: 1188–1048W, 408–49.48N
and 1038–888W, 29.88–39.28N.
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The root-mean-square error (RMSE) and correlation of

surface soil moisture estimates from three Noah simu-

lations (with climatology and spectral- and biophysical-

based GVF inputs) are shown in Fig. 7. Verification

results generally show the insertion of near-real-time

GVF, either spectrally or biophysically based, is bene-

ficial to improving model soil moisture simulations with

decreased RMSE and enhanced correlation compared

to the runs using GVF climatology. Larger impacts can

be found between day of year (DOY) 127 and 157, as

well as for DOY 223–289.

To better illustrate relative performances of the two

NRT GVF datasets, the relative differences (RDs) be-

tween Noah runs with EVI- and LAI-based GVF are

then computed and compared. First, the bias, RMSEs,

and correlations of surface and root-zone SM estimates

are computed separately for Noah model runs with

spectral and biophysical GVF as inputs. Second, the

RD of bias and RMSE is calculated as (RDNoah_EVI 2
RDNoah_LAI)/RDNoah_EVI, while the RD of the correla-

tion is computed as (RDNoah_LAI 2 RDNoah_EVI)/

RDNoah_EVI. The positive values represent SM estimates

from the Noah LSM using LAI-based GVF that have

smaller errors or higher correlation compared to the

in situ SM observations from NASMD, meaning the use

of biophysical-based GVF improves the accuracy of the

Noah SM estimates. Again, the differences are tested for

statistical significance at a confidence interval of 95%.

The RD of bias, RMSE, and correlation on each DOY

over the warm season is shown in Fig. 8. The validation

results reveal that the biophysical-based GVF out-

performs the spectral-based GVF dataset in general for

both surface and root-zone SM estimates. It can be

further concluded that the improvement in root-zone

FIG. 5. Normalized changes of (left) surface and (right) root-zone SM estimates from the Noah LSM when two different GVF inputs are

introduced in the Noah model over the warm season (April–October) between 2007 and 2016.

FIG. 6. Differences in normalized SM estimates over different land types.

DECEMBER 2018 FANG ET AL . 1925

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/21/21 08:43 PM UTC



SM estimates when using GVF converted from LAI is

significantly larger than that in surface SM by 1.2% in

bias, 4.2% in RMSE, and 17.7% in correlation.

At the early stage of the warm season, the precision of

Noah SM estimates with the LAI-based GVF is slightly

higher than that with the EVI-based input. The differ-

ences between the twoGVF datasets steadily drop down

from spring to early summer, which indicates both GVF

datasets are equally capable of capturing vegetation

green-up trends from May to June. However, at the

turning point of early July, the use of biophysical-based

GVF becomes more beneficial to the Noah SM esti-

mates, and the positive impact steadily increases from

July to October. It is understandable and reasonable

when taking a look at Fig. 8 and Fig. 3 in parallel. During

the period from July to October, the land vegetation

information interpreted from EVI is always at full cov-

erage, while LAI-based GVF provides additional dy-

namic information of an increasing trend from July to

August, followed by a decrease starting in September. In

the Noah LSM, the proportion of the three components

of evaporation is very sensitive to the GVF parameter

(Gutman and Ignatov 1998), and thus the surface energy

balance can be largely changed responding to the

change in GVF. In other words, the accurate represen-

tation of green vegetation cover is crucial to the Noah

LSM to estimate flux components correctly, which fur-

ther determines the accuracy of predictions in land sur-

face variables such as soil moisture. The increase of GVF

from July to August and the decrease in September by

about 20% in each phase is absolutely critical information

to the Noah model to partition total evapotranspiration

in a more accurate way. The validation results clearly

demonstrate the added skill of LAI-based GVF, partic-

ularly over the period of July and October. Overall, the

use of GVF converted from LAI improves the accuracy

of Noah SM estimates over 65.3% of the NASMD sites

for the surface and over 66.2% for root zone.

Moreover, the average differences in error statistics

for root-zone SM estimates are calculated as a function

of GVF variation at a 5% interval. The frequency his-

togram is shown in Fig. 9. Noah root-zone SM estimates

with biophysical-based GVF input present overall less

bias and RMSE and higher correlation with respect to

the ground validation dataset, except for slightly larger

bias andRMSEwhen theGVF variation is at the level of

10%. The larger the variation that the twoGVF datasets

have, the higher the positive impact of the Noah model

responses to biophysical GVF input. The improvement

in root-zone SM estimates by using LAI-based GVF is

1.0% in bias and 3.2% in correlation on average when

GVF variation is less than 30%, while the improvement

increases to an average of 6.2% in bias and 8.9% in

correlation when the GVF variation reaches 30% and

larger. The mean improvement in normalized bias,

RMSE, and correlation at all levels of GVF differences

combined are 4.7%, 1.7%, and 6.7%, respectively.

3) EVALUATION OF THE NOAH OFFLINE FLUX

SIMULATIONS

This section will present results on verification of soil

heat conduction flux G and sensible H and latent lET

flux estimates from the Noah LSM using different GVF

sources. Given that the land surface models and weather

forecast models in our experiment operate on a regional

scale at coarse spatial resolution (;12km in our ex-

periment), verification using the footprint of surface flux

FIG. 7. RMSE (m3m23) and correlation of Noah SM estimations

validated against in situmeasurements for thewarm season (April–

October) averaged over the CONUS domain.

FIG. 8. RDs of bias, RMSE, and correlation between Noah SM

estimates using spectral- and biophysical-based GVF datasets with

respect to in situ observations on each DOY over the growing

season (April–October), averaged from 2007 to 2016.
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observations occurring on a scale of 0.1–1 km is often

hampered by a scale mismatch issue (Anderson et al.

2004, 2011; Doran et al. 1998; Gao et al. 1998). The

limitation of direct comparison with tower flux obser-

vations is further exacerbated over heterogeneous land

cover pixels, where one surface flux tower location may

not have vegetation properties that are representative of

the complete 12-km pixel. In our study, instead of using

tower flux observations, the Atmosphere–Land Ex-

change Inverse (ALEXI) model is selected to evaluate

the relative performance of the land surface model with

different GVF datasets considering that 1) the ALEXI

model has demonstrated satisfactory reliability of its ET

estimates, 2) the ALEXI model is able to provide ac-

curate partitioning of sensible and latent heat fluxes

across the CONUS (Anderson et al. 2007, 2011), and 3)

the ALEXI model operates at comparable spatial res-

olution as in our experiments. Therefore, ALEXImodel

simulations are assumed to serve as a good reference for

the ET evaluation effort.

The ALEXI model is built on the two-source energy

budget (TSEB) approach of Norman et al. (1995), which

partitions the composite surface radiometric temperature

into characteristic soil and canopy temperatures, based on

the fraction of vegetation cover. In ALEXI, the lower

boundary conditions for the two-source model are pro-

vided by thermal infrared observations taken at two times

during the morning hours from GOES. For regional ap-

plications, the TSEB model has been coupled with a one-

dimensional atmospheric boundary layer (ABL) model

(McNaughton and Spriggs 1986). The ABL model then

relates the rise in air temperature above the canopy during

this interval and the growth of the ABL to the time-

integrated influx of sensible heating from the surface, and

ET is computed as a partial residual to the energy budget.

The time series of correlation of the sensible, latent,

and ground flux components between ALEXI retrievals

and Noah simulations are shown in Fig. 10. Better

agreements of the Noah model latent and ground heat

flux simulations with the ALEXI model retrievals are

obtained when either spectral or biophysical GVF has

been used. However, sensible heat flux simulations from

Noah show a slight degradation using near-real-time

GVF compared to GVF climatology. Notably, Noah ET

estimates using LAI-based GVF presents the best

agreement with ALEXI retrievals.

In addition, Noah estimates of the Bowen ratio are

compared with ALEXI retrievals to evaluate the rela-

tive value of near-real-time spectral- and biophysical-

based GVF datasets to the Noah model from another

perspective (Fig. 11). The same conclusion can be drawn

from the Bowen ratio comparison that biophysical-

based GVF is more beneficial to surface energy flux

simulations for the Noah land surface model.

c. Evaluation of WRF forecasts using different GVF
inputs

After evaluating how spectral and biophysical GVFs

impact offline Noah runs, this section focuses on the

assessment of WRF forecasts using ground weather

observations from over a thousand ground sites. A

sensitivity analysis is given first, followed by the quan-

titative validation.

1) IMPACT OF GVF DIFFERENCES ON WRF
FORECASTS

The comparison of WRF 2-m surface temperature

(T2m) forecasts at 1800 UTC between WRF runs using

FIG. 9. Frequency histogram of relative differences of bias

(black), RMSE (blue), and correlation (red) as a function of GVF

variation. FIG. 10. Noah flux estimates (sensible, latent, and ground heat

fluxes) validated against ALEXI flux component retrievals,

showing comparison among the Noah LSM runs with climatology

and spectral and biophysical GVF datasets.
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GVF climatology andNRTGVF (EVI andLAI based) is

shown in Figs. 12a and 12b for WRF_EVI run minus

WRF_CLIM and WRF_LAI run minus WRF_CLIM,

respectively. The differences are averaged over a 1-week

period from 16 to 22 April 2015. Compared with T2m

forecasts using GVF climatology, both NRT GVFs pre-

dict warmer temperatures over the westernUnited States

and cooler forecasts over the northern East Coast as well

as the boundary between Texas and Mexico. While uti-

lization of EVI-based GVF does not show significant

impact over the Midwest region, the replacement of

LAI-based GVF remarkably increases forecasts of sur-

face temperature compared to WRF_CLIM run.

When intercomparing T2m forecasts between WRF

runs with these twoNRTGVF inputs (Fig. 13, left), T2m

forecasts are generally lower fromWRF runs with EVI-

based GVF on the order of 0.4–2.6K over the majority

of the central and easternUnited States, yet significantly

higher in southern Nevada and the southern West Coast.

Similarly, the difference in 2-m relative humidity (RH2m)

forecasts at 1800 UTC is shown in Fig. 13 on the right. In

general, the pattern of RH2m variation matches well with

that of T2m but with the opposite trend. The patterns are

physically sound as T2m drops in theWRF run using EVI-

basedGVF overmost of the central and eastern regions in

response to a positive anomaly compared to LAI-based

GVF, which in turn increases surface humidity, and vice

versa in other areas.

2) EVALUATION OF WRF FORECASTS

To quantitatively analyze which GVF derivation

method performs better when introduced in WRF, fore-

casts from the three WRF runs (T2m and RH2m) using

climatology GVF and EVI- and LAI-based GVF are

evaluated against ground weather observations from

nearly a thousand ground sites.

FIG. 11. Correlation of the Bowen ratio between Noah estimates and ALEXI retrievals,

showing comparison among the Noah LSM runs with climatology and spectral and biophysical

GVF datasets.

FIG. 12. Difference inWRFT2m at 1800UTC, averaged over the period of 16–22Apr 2015 for (a)WRF_EVI runminusWRF_CLIM and

(b) WRF_LAI run minus WRF_CLIM.
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Time series comparison of T2m (solid lines) and

RH2m (dashed lines) at 1800 UTC between WRF fore-

casts and in situ observations (green dot–dashed lines)

from 16 to 23 April 2015 is shown in Fig. 14 for day 1

forecasts on the left and day 2 on the right. At this

sample site in California (37.378N, 118.378W), the area is

under a drought, and therefore it is obvious that the

WRF run using climatology GVF predicts significant

lower T2m and higher RH2m during daytime because of

the overestimation of surface green cover over that pe-

riod. The use of NRT GVF inputs (either spectral or

biophysical based) is able to reduce the bias in both T2m

and RH2m to a great extent. Worth noting is that the

biophysical LAI-based GVF shows more benefits to the

bias reduction than the spectral EVI-based one (red

lines versus blue lines). The positive impact of bio-

physical LAI-based GVF is consistently detected for

both day 1 and day 2 WRF forecasts by removing the

cold bias in T2m, while using EVI-basedGVF presents a

slight degradation in day 2 forecasts.

Taking an overall review of validation results from

about 840 ground sites over the CONUS domain, RMSEs

of those threeWRF forecasts at 1800 UTC on each day of

the validation period (16–22 April 2015) are compared for

T2m (top) and RH2m (bottom) and for day 1 (left) and

day 2 (right) separately as shown in Fig. 15. Both T2m and

RH2m forecasts using GVF climatology depict highest

uncertainty in general, withRMSE inT2m (RH2m)on the

order of 1.9–2.4K (9.0%–10.0%) for day 1 forecasts. The

accuracy of WRF T2m forecasts with insertion of EVI-

basedGVFare overall improved,with a slight degradation

on 22April for day 1 forecasts aswell as 21 and 23April for

day 2. On the other hand, RMSEs of T2m forecasts re-

markably drop with the introduction of biophysical GVF

FIG. 13. Difference in (left) T2m and (right) RH2m at 1800 UTC between WRF runs using spectral- and biophysical-based GVF

(WRF_EVI run minus WRF_LAI run), averaged over the period of 16–22 Apr 2015.

FIG. 14. Comparison of time series of T2m (solid lines) and RH2m (dashed lines) between WRF forecasts and in situ observations

(green dot–dashed lines) in California (37.378N, 118.378W) at 1800 UTC, averaged over the period of 16–22 Apr 2015, for (left) day 1 and

(right) day 2 forecasts.
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by nearly 0.1 for day 1 and 0.16 for day 2 forecasts on

average. As for the validation on RH2m forecasts, using

EVI-based GVF provides certain added value before

20 April but not for the rest of the week. On the contrary,

the use of LAI-basedGVF significantly reducesRMSE for

both days. The improvements brought by the biophysical

GVF are more consistent and at a larger magnitude

compared to spectral GVF.

Difference maps in RMSEs for each of the validation

sites are capable of presenting improvement/degradation

from a spatial perspective. The differences over each

site are tested for statistical significance with a signifi-

cance level of 0.05. As shown in Fig. 16, the RMSE

difference is computed by the WRF–EVI run minus

WRF–LAI runs over ;840 ground sites collected from

the Global Upper Air and Surface Weather Observa-

tions, with positive (negative) values meaning that

forecasts from the WRF–EVI run show larger (smaller)

error than those using LAI-based GVF. The sites with

warm (cool) colors shown in the map are where bio-

physical LAI-based GVF outperforms (underperforms)

the spectral EVI-based one. Evidently, for T2m fore-

casts, the WRF Model performs better with LAI-based

GVF input over the majority of the sites across the

country, with an exception over Iowa and parts of North

Dakota. Moreover, LAI-based GVF has compelling

advantages in improving WRF RH2m forecasts com-

pared to the spectral-based GVF.

5. Summary and discussion

Better representation of GVF is crucial to LSMs for

precisely describing current vegetation states, which can

improve the accuracy of the partitioning of surface

sensible and latent heat fluxes (Kurkowski et al. 2003).

As the weakness of spectral-based GVF (converted

from NDVI or EVI) is recognized, this paper proposes

to create a biophysical GVF product from LAI, which is

an intrinsic physical quantity. We first quantify their

differences and then analyze their impacts on an offline

LSM and coupled weather forecast model. The compari-

son revealed huge variations between spectral- and

biophysical-based GVF datasets from both spatial and

temporal aspects. The significant differences within these

two GVF datasets inevitably affect the accuracy of pre-

dictions from the Noah LSM and weather forecast

models.

Simulations from uncoupled Noah LSM and forecasts

from the WRFModel are obtained using either spectral

or biophysical GVF inputs while meteorological forcing

and other settings were kept the same. The soil moisture

simulations from the offline Noah runs and the weather

forecasts from WRF runs were then evaluated using

in situ measurements or reanalysis products to assess

their performance.

As for offline Noah simulations, the surface and

root-zone SM estimates are validated against in situ

SM measurements from NASMD over the period

from 2000 to 2012. Validation results show that the

FIG. 15. Validation of (top) T2m and (bottom) RH2m forecasts fromWRF runs using;840 ground sites over the CONUS; RMSEs of

WRF runs using climatology (black) and EVI-based (blue) and LAI-based (red) GVF at 1800 UTC 16–22 Apr 2015, for (left) day 1 and

(right) day 2 forecasts.
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biophysical-based GVF outperforms the spectral-based

one in general, and the positive impact on root-zone SM

estimates is significantly larger than that on surface SM.

The use of GVF converted from LAI improves the ac-

curacy of Noah SM estimates over 65.3% of the NASMD

sites for the surface and over 66.2% for the root zone. It is

even more promising to see that using LAI-based GVF

particularly outperformed the spectral-based one over

the period of July–October when the biophysical GVF is

able to provide an additional vegetation dynamic while

the spectral one suffers from the saturation issue.

This study further assessed the impact of two dif-

ferent GVF datasets on coupled atmospheric pre-

diction models. Once again, significant variation is

found in near-surface predictions from WRF when

using those two different GVF derivation methods.

The WRF Model predicted lower 2-m surface tem-

perature and higher surface humidity using spectral-

based GVF over vast parts of the central and eastern

regions than it did using the biophysical-based GVF.

Evaluation of T2m and RH2m forecasts from theWRF

Model shows the use of biophysical GVF is capable of

consistently improving the accuracy of WRF T2m and

RH2m forecasts for both days, compared to that of

spectral GVF.

In conclusion, our preliminary evaluation results show

the accuracy of NCEP Noah LSM soil moisture esti-

mates and WRF Model forecasts increases when using

biophysical-based GVF with improved sensitivity in

high-biomass regions. With the increasing need for the

accurate representation of green vegetation status in

land surface models, both spatially and temporally, at-

tempts to create a better remotely sensed GVF dataset

are worth further research.
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